Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrason Sonochem ; 101: 106700, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38006821

RESUMO

The degradation of recalcitrant organic pollutants by sulphate radical (SO4•-) represents one of the most recent developments in oxidation-based water treatment. In most cases, persulfate (PS) acts as a precursor of sulphate radicals. This study employed ultrasound-activated PS to generate reactive species, facilitating the degradation of bisphenol S (BPS), a well-known contaminant of emerging concern (CECs). An ultrasound with a frequency of 620 kHz and 80 W power was utilised for the degradation studies. The applied oxidation system successfully resulted in the complete degradation of BPS in both pure and real environmental water samples. Additionally, the Chemical oxygen demand (COD) was reduced to an acceptable limit in both matrices, with a reduction of 85 % in pure water and 73 % in river water. The degradation was monitored by varying chemical parameters such as pH, inorganic ions, and organics concentration. The results indicate that under specific pH conditions, the degradation efficiency followed the order of pH 3 > 4 > 7 > 11. The presence of coexisting matrices suppressed the efficiency by scavenging the reactive species. Utilizing high-resolution mass spectrometry (HRMS) analysis, this study identified seven intermediate products during identified during the degradation of BPS. Furthermore, a comprehensive mechanism has been deduced for the transformation and degradation process. All the results presented in this study underscore the applicability of the US/PS system in the removal of CECs.

2.
Environ Monit Assess ; 190(1): 22, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29243078

RESUMO

Pollution and fate of pollutants in polar region are important topics of investigation in the last several decades. We have analysed sediment samples from Kongsfjorden and Krossfjorden, two sites from Arctic region, and detected a number of emerging contaminants (ECs) using high-resolution mass spectrometry connected to UPLC (LC-Q-ToF-MS). Out of the seven sampling sites selected, bisphenol S (BPS), an identified pollutant and plasticiser, was detected and quantified in three sediment samples from Kongsfjorden (≈ 0.2 ppm). Four major surfactants (decylbenzenesulphonic acid, undecylbenzenesulphonic acid, 2-dodecylbenzenesulphonic acid and tridecylbenzenesulphonic acid) were also identified. A possible metabolite of BPS (sulphur trioxide derivative of BPS) was identified in one of the samples. It is proposed that the presence of ECs is the result of human activities in the region for a long time. To the best our knowledge, this is the first report on the identification of BPS and surfactants in the Arctic region.


Assuntos
Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Fenóis/análise , Sulfonas/análise , Tensoativos/análise , Regiões Árticas , Sedimentos Geológicos/química , Atividades Humanas , Humanos , Espectrometria de Massas
3.
Environ Sci Pollut Res Int ; 21(6): 4297-308, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24306722

RESUMO

Atenolol is a ß-blocker drug and an identified emerging pollutant. Advanced oxidation processes (AOPs) utilise the reaction of a highly oxidising species (hydroxyl radicals, (•)OH) for the mineralisation of emerging pollutants since conventional treatment methodologies generally fail to degrade these compounds. In the present work, degradation of atenolol was carried out using ultrasound with frequencies ranging from 200 kHz to 1 MHz as a source of hydroxyl radical. The degradation was monitored by HPLC, total organic carbon (TOC) and chemical oxygen demand (COD) reduction and ion chromatography (IC). Nearly 90 % of degradation of atenolol was observed with ultrasound having 350 kHz. Both frequency and power of ultrasound affect the efficiency of degradation. Nearly 100 % degradation was obtained at a pH of 4. Presence of various additives such as sodium dodecyl sulphate, chloride, sulphate, nitrate, phosphate and bicarbonate was found to reduce the efficiency of degradation. Although nearly 100 % degradation of atenolol was observed under various experimental conditions, only about 62 % mineralisation (from TOC and COD measurements) was obtained. Nearly eight intermediate products were identified using high-resolution mass spectrometry (LC-Q-TOF). These products were understood as the results of hydroxyl radical addition to atenolol. The degradation studies were also carried out in river water which also showed a similar degradation profile. A mechanism of degradation and mineralisation is presented.


Assuntos
Atenolol/análise , Poluentes Químicos da Água/análise , Atenolol/química , Análise da Demanda Biológica de Oxigênio , Água Doce/química , Radical Hidroxila/química , Modelos Químicos , Nitratos/química , Oxirredução , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...